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Abstract

A stationary Carnot-like power plant model, with three sources of
irreversibilities (the finite rate of heat transfers, heat leak and internal
dissipations of the working fluid), is analyzed by a criterion of partial
optimization for five objective functions (power, efficiency, ecological
function, efficient power and �̇ criterion). A remarkable result is that if two
constraints (design rules) are applied alternatively: constrained internal thermal
conductance or fixed total area of the heat exchangers from hot and cold
sides; the optimal allocation, cost and effectiveness of the heat exchangers
are the same for all these objective functions independently of the transfer
heat law used. Thus, it is enough to find these optimal relations for only
one, maximum power, when all heat transfers are linear. In particular, for
the Curzon–Albhorn-like model (without heat leak), the criterion for the so-
called ecological function, including other variables (the internal isentropic
temperature ratio), becomes total.

PACS numbers: 01.40G, 05.70.−a, 64.70.F

1. Introduction

Recently in the conclusions of [1], a criterion of partial optimization for four objective
functions (power, efficiency, the so-called ecological function and entropy generation [2])
has been presented, and in which the optimal characteristic parameters were: the allocation,
cost and effectiveness of the heat exchangers of an irreversible Carnot cycle with linear finite
rate heat transfers between the working fluid and its two heat reservoirs, and linear heat
leak. Although the criterion of partial optimization is easily applicable to any cyclic model, a
standard irreversible Carnot-like cycle was chosen because of its simplicity to account for the
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main irreversibilities that usually arise in real heat engines: finite rate heat transfer between
the working fluid and the external heat sources, internal dissipation of the working fluid and
heat leak between reservoirs [3]. This cyclic model was originally proposed by Chen [4]
and simultaneously by Yan [5] with different approaches for the internal dissipation (see also
Gordon [6]). Formerly, Bejan [7–10] considered this model but without internal dissipation
and Curzon–Alhborn [11] when there is not heat leak in the model, i.e. the only source of
irreversibility in the engine (CA-engine) is a linear finite rate heat transfer between the working
fluid and its two heat reservoirs [12].

The above Carnot-like cyclic model has been studied at length for many objective
functions, besides power, efficiency, ecological function and entropy generation, different
transfer heat laws and several characteristic parameters.

The maximum power and efficiency have been obtained in [4, 5, 13]. The maximum
ecological function was obtained in [14] for the CA-engine and in a more general form in
[15–17]. Bejan [10] has considered the minimization of entropy generation. In general, these
optimizations were performed with respect to only one characteristic parameter: the internal
isentropic temperature ratio. In the first analysis of the CA-engine, the time ratio of heat
transfer from the hot to the cold side was considered, but in further works this ratio was
not taken into account (see the reviews of [18–21] for more details). In [1, 22], this ratio
was taken into account as another characteristic parameter of the engine, and we found that
the time allocation of heat transfer between the hot and cold sides is the same for maximum
power and efficiency, and it is also the same for the maximum ecological function and minimum
entropy generation [1]. In this same work, the optimization with respect to other parameters,
such as the allocation ratio of the heat exchangers [8] and the cost and effectiveness ratio of the
heat exchangers [2, 23], for this Carnot-like cyclic model was performed. As a consequence,
the partial criterion mentioned above was obtained.

On the other hand, effects of heat transfer laws or when a property is independent of
the heat transfer law for this Carnot-like cyclic model have been discussed in several works
[16–20, 24–29], and so on (see also references included there). Moreover, the optimization
of other objective functions (efficient power, �̇ criterion, and so on) has been analyzed
[3, 18–21, 30–32].

In what follows, a stationary Carnot-like power plant model (see figure 1), with
irreversibilities of the finite rate of heat transfers between the heat engine and its reservoirs,
heat leak between the reservoirs and internal dissipations of the working fluid, is analyzed by
a criterion of partial optimization for several objective functions (power, efficiency, ecological
function, efficient power and �̇ criterion). We have found that optimal allocation, cost and
effectiveness of the heat exchangers are the same for all these objective functions. Besides
these optimal values are invariant to the law of heat transfer used, including the heat leak, if
two constraints are applied: constrained internal thermal conductance or fixed total area of the
heat exchangers from the hot and cold sides.

This paper is organized as follows. In section 2, the stationary Carnot-like power plant
model and a criterion of partial optimization are presented. In section 3, the optimal expressions
for allocation, cost and effectiveness of the heat exchangers corresponding to maximum power
are shown when all the heat transfers are assumed to be linear in temperature differences.
Section 4 is devoted to discussions and conclusions.

2. The Carnot-like power plant and a criterion of partial optimization

The class of the Carnot-like power plant model shown in figure 1 satisfies the following
conditions for
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Figure 1. A Carnot-like power plant with heat leak and finite heat transfer rates, and internal
dissipations of the working fluid.

(i) The working fluid flows through the system in a stationary state. The cycle of the power
plant consists of two isothermal and two adiabatic processes. The temperatures of the
working fluid in the hot and cold isothermal processes are, respectively, T1 and T2. The
temperatures of the hot and cold heat reservoirs are, respectively, TH and TL.

(ii) There is thermal resistance between the working fluid and heat reservoirs.
(iii) There is a heat leak rate from the hot reservoir to the cold reservoir [7]. In real-power

plants leaks are unavoidable. There are many features of an actual power plant which
fall under that kind of irreversibility, such as the heat lost through the walls of a boiler, a
combustion chamber, or a heat exchanger, and heat flow through the cylinder walls of an
internal combustion engine, and so on.

(iv) Besides thermal resistance and heat leak, there are other irreversibilities in the power
plant: the internal irreversibilities. For many devices, such as gas turbines, automotive
engines and thermoelectric generator, there are other loss mechanisms, i.e. friction or
generators losses, and so on, that play an important role, but are hard to model in detail.
Some authors use the compressor (pump) and turbine isentropic efficiencies to model
the internal loss in the gas turbines or steam plants [33]. Others, in Carnot-like models,
use simply one parameter to describe the internal losses. This parameter is associated
with the entropy produced inside the power plant during a cycle and makes the Claussius
inequality an equality (for details see [18]):

Q̇2

T2
− I

Q̇1

T1
= 0, (1)

where Q̇i(i = 1, 2) are the heat transfer rates and I = �S2
�S1

� 1 [4].

The heat transfer rates Q̇H , Q̇L transferred from the hot–cold reservoirs are given by

Q̇H = Q̇1 + Q̇ (2)

Q̇L = Q̇2 + Q̇, (3)

3
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where the heat leak rate is Q̇ which is positive, and Q̇1, Q̇2 are the finite heat transfer rates
between the reservoirs TH , TL and the working substance of the model.

By first law and combining equations (1) and (2), the power P and heat transfer rate Q̇H

are given by

P = Q̇H − Q̇L = Q̇1 − Q̇2 = Q̇1(1 − Ix) (4)

Q̇H = Q̇1 + Q̇ = P

1 − Ix
+ Q̇, (5)

where x = T2
T1

is the internal isentropic temperature ratio.
The thermal efficiency is given by

η = P

f (x)P + Q̇
, (6)

where f (x) = 1
1−Ix

is positive.
The entropy-generation rate is (see the comment of Yan in [16])

Sgen = Q̇L

TL

− Q̇H

TH

> 0.

Then, the entropy-generation rate multiplied by the temperature of the cold side gives us
a function �, which is (equations (2) and (4))

� = TLSgen = TL

(
Q̇H − P

TL

− Q̇H

TH

)
= Q̇H (1 − μ) − P

so,

� = g(x)P + Q̇(1 − μ), (7)

where μ = TL

TH
and g(x) = f (x) (xI − μ) is also positive, since 1 − Ix must be less than the

Carnot efficiency 1 − μ.
The ecological function [14], if TL is considered as the environmental temperature, is

given by

E = P − �

E = (1 − g(x))P − Q̇(1 − μ), (8)

and g (x) is less than 1, since, if there is no heat leak, the following inequality is satisfied
([15, 16] and comments of Yan there):

1 <
P

�
= 1

g (x)
.

The efficient power is defined as power times efficiency [31] (cf with [34]):

Pη = ηP . (9)

Finally, the �̇ criterion [30] states a compromise between energy benefits and losses for
a specific job and for the Carnot-like power plant discussed herein, it is expressed as [3]

�̇ = 2η − ηmax

η
P , (10)

where ηmax can assume to be a constant.
The six objective functions above (P, η,�,E, Pη and �̇) will depend only on two

variables: x (the isentropic temperature ratio) and φ which will be related to two alternate
constraints (design rules [35]) for the heat exchange at the two ends of the Carnot-like power
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plant model. It also relates to the heat transfer rate cost, which differs from the hot and cold
sides of the model [23].

The first design rule corresponds to the allocation of the heat exchangers [9]. The thermal
conductances α, β of the hot and cold sides, respectively, can be written as

α = UAH ; β = UAL,

where U is the overall heat transfer coefficient, and AH and AL are the available areas for heat
transfer. Then, a first approach is to suppose that U is fixed, in both the hot side and the cold
side heat exchangers, and that the area A can be allocated between both. The optimization
problem is to select the best allocation ratio. To take UA as a fixed value can be justified in
terms of the area purchased, and the fixed running and capital costs that altogether determine
the overall heat transfer coefficient [23].

Thus, the first design rule is given by the constrained internal thermal conductance of the
Carnot-like power plant model:

α + β = γ , (11)

where γ is a constant, which is applied to the allocation of the heat exchangers from the hot
and the cold side with the same overall heat transfer coefficient U by unit of area A in both
ends. Then,

α

U
+

β

U
= A,

and parametrize it as

φ = α

UA
; 1 − φ = β

UA
. (12)

Also, φ can correspond to the cost of providing the heat transfer rate which differs for the
hot reservoir and the cold reservoir of the power plant. Let this be represented as having a
cost per unit heat transfer: a on the hot side and b on the cold side. Then,

aα + bβ = C, (13)

where C is the fixed total cost. Thus, we have that the characteristic parameter above changes
to

φ = cα; 1 − φ = cβ, (14)

where c = a
C

.
Alternatively, we may face an existing heat exchange apparatus which is to be redistributed

between the hot and cold sides to achieve optimum operation regimes. Now, the total area A is
fixed but when distributed it has different overall heat transfer coefficients and hence different
effectiveness on the hot and cold sides [1]. This is the second design rule which corresponds
to

A = AH + AL = α

UH

+
β

UL

, (15)

where AH ,AL are heat transfer areas and UH,UL are overall heat transfer coefficients on the
hot and cold sides, respectively.

In parametrizing again:

φ = α

UH A
; 1 − φ = β

ULA
. (16)

The optimization of five objective functions (P, η,E, Pη and �̇) for the parameter x is
well known, including different heat transfer laws (maximum power, efficiency or ecological
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function ([1, 18–21], and references included therein), and maximum efficient power [31] and
�̇ criterion [3]). The remaining objective function � (TLSgen) does not have a minimum for
the variable x, within the valid interval, as was shown in [1] and for the variable φ, neither
has � a minimum within its valid interval, as will be shown in what follows. Henceforth, x
will be fixed and we will assume that the law of heat transfer can be any law, including also
the heat leak, with internal thermal conductances, overall heat transfer coefficients, areas and
costs given by equations (11), (13) or (15).

Now, if φmp is the point in which the power P achieves a maximum value, then

∂P

∂φ

∣∣∣∣
φmp

= 0 and
∂2P

∂φ2

∣∣∣∣
φmp

< 0.

We will apply it to each one of the other objective functions.
First, the power and the efficiency satisfy the functional relationship given by

equation (6). As

∂η

∂φ
=

Q̇
(

∂P
∂φ

)
[f (x)P + Q̇]2

since Q̇ does not depend on the variable φ. Therefore,

∂η

∂φ

∣∣∣∣
φme

= 0 = ∂P

∂φ

∣∣∣∣
φmp

,

where φme is the point in which the efficiency η achieves a maximum value.
This implies that their roots are the same φmp = φme (necessary condition). Also, it is

easily seen that for φmp = φme, the power and the efficiency reach a maximum (sufficiency
condition), since

∂2η

∂φ2

∣∣∣∣
φmp=φme

=
Q̇

(
∂2P
∂φ2

∣∣
φmp=φme

)
[f (x)P + Q̇]2

< 0.

Second, the power and the entropy generation satisfy the functional relationship given by
equation (7). Now, as

∂�

∂φ

∣∣∣∣
φm�

= 0 = ∂�

∂φ

∣∣∣∣
φmp

and
∂2�

∂φ2

∣∣∣∣
φmp=φm�

= g(x)

(
∂2P

∂φ2

∣∣∣∣
φmp=φm�

)
< 0

then, for this model, the entropy generation does not have a minimum because the sufficiency
condition is not satisfied. For the variable x, the entropy generation does not have a minimum
within its valid interval [1]. Therefore, this objective function does not have a global minimum.

Third, the power and the ecological function E satisfy the functional relationship given
by equation (8). Then,

∂E

∂φ

∣∣∣∣
φmec

= ∂P

∂φ

∣∣∣∣
φmp

− ∂�

∂φ

∣∣∣∣
φm�

= 0 and
∂2E

∂φ2

∣∣∣∣
φmp=φmec

= (1 − g(x))

(
∂2P

∂φ2

∣∣∣∣
φmp=φmec

)
< 0,

where φmec is the point in which the function E achieves a maximum value.
Fourth, the power and the function Pη satisfy the functional relationship given by

equation (9). As
∂Pη

∂φ
= P

∂η

∂φ
+ η

∂P

∂φ
so,

∂Pη

∂φ

∣∣∣∣
φpme

= 0 = ∂P

∂φ

∣∣∣∣
φmp

= ∂η

∂φ

∣∣∣∣
φme

.

6



J. Phys. A: Math. Theor. 42 (2009) 425205 G Aragón-González et al

It is easily seen that for φmp = φme = φpme, the power, efficiency and Pη reach a maximum
(sufficiency condition) since,

∂2Pη

∂φ2

∣∣∣∣
φmp=φme=φpme

=
(

P
∂2η

∂φ2

) ∣∣∣∣
φmp=φme=φpme

+

(
η
∂2P

∂φ2

) ∣∣∣∣
φmp=φme=φpme

< 0

because
(
η ∂P

∂φ

)∣∣
φmp=φme=φpme

= 0 and since P and η are positives in φmp = φme = φpme.

Fifth, the power and the �̇ function satisfy the functional relationship given by

equation (10) with
·
Q > 0. As

∂�̇

∂φ

∣∣∣∣
φmp=φme=φm�

= 2

(
∂P

∂φ

∣∣∣∣
φmp=φme=φm�

)

+ ηmax

((
P

η2

∂η

∂φ

) ∣∣∣∣
φmp=φme=φm�

−
(

1

η

∂P

∂φ

) ∣∣∣∣
φmp=φme=φm�

)
= 0

Moreover,
∂2�̇

∂φ2

∣∣∣∣
φmp=φme=φm�

=
(

2η − ηmax

η

∂2P

∂φ2

) ∣∣∣∣
φmp=φme=φm�

+ ηmax

(
P

η2

∂2η

∂φ2

) ∣∣∣∣
φmp=φme=φm�

< 0

since �̇ is positive in φm� and
∂P

∂φ

∣∣∣∣
φmp

= ∂η

∂φ

∣∣∣∣
φme

= 0.

Thus, we have obtained

φmp = φme = φmec = φpme = φm� (17)

independently of the transfer heat law used.
Therefore, we have the following criterion of partial optimization.

Criterion 1. Let F(x, φ) = η(x, φ), E(x, φ), Pη(x, φ), �̇(x, φ) (efficiency, ecological
function, efficient power or �̇ criterion, respectively) where x corresponds to the internal
isentropic temperature ratio and φ is a variable that corresponds to the allocation, cost per
unit heat transfer or different effectiveness of the heat exchangers for the class of stationary
Carnot-like power plant models analyzed. If φmp is the point in which the power P achieves
a maximum value then φmp is the point in which the function F(x, φ) achieves a maximum
value (equation (17)). This optimization is valid for any law of heat transfer that satisfies at
least one of the equations (11), (13) or (15).

A remarkable conclusion of this criterion is that it can find the maximum for one and only
one objective function, for example the power, for the Carnot-like power plant model, by

∂P

∂φ

∣∣∣∣
φmp

= 0 and
∂2P

∂φ2

∣∣∣∣
φmp

< 0,

where φ corresponds to one of the variables mentioned in the criterion above. After the value
of equation (17) is substituted in the appropriate functional relationships (equations (6)–(10)),
the obtained F

(
x, φmp

) = F (x) can be, then, optimized with respect to the x parameter only
as was performed for the efficiency in [13]. Thus, we have found that the partial criterion
optimizes the other objective functions. Moreover, this optimization is a property independent
from the heat transfer law.

Finally, the criterion yields that it is enough to have one, and only one, algebraic expression
of one of the objective functions and any heat transfer law. Thus, we can choose for our
convenience the power and the conduction heat transfer law since they are algebraically the
simplest.

7



J. Phys. A: Math. Theor. 42 (2009) 425205 G Aragón-González et al

3. Optimum φ for the dimensionless power output

If all heat transfer rates are assumed to be linear in temperature differences, the dimensionless
power output, p = P

UATH
, if φ is given by equation (12) (the first rule (11)), is [1]

p = (1 − √
Iμ)2

1
φ

+ I
1−φ

(18)

because xmp is the point in which the power P achieves a maximum value and it is given by
[13]

xmp =
√

μ

I
. (19)

Now, if φmp is the point in which the power P reaches its maximum, φmp is given by

φmp = 1√
I + 1

. (20)

Then, it follows from equation (20) that when the power plant operates at maximum
power, also for the optimization of the other objective functions given by the criterion of
partial optimization, the relation of the heat transfer areas from the cold side to the hot side is

AL

AH

=
√

I � 1; β

α
= UAL

UAH

=
√

I

AL =
√

IAH

. (21)

This result shows that the size of the heat exchanger in the cold side must be larger than the
size of the heat exchanger in the hot side. In accordance with the definitions adopted by the
internal conductance, if I > 1, the one for the cold side results greater than the one for the hot
side.

If, instead of equation (12), equation (14) is applied, the dimensionless power, p∗ = P
C∗TH

with C∗ = C
a
, is given by

p∗ = (1 − √
Iμ)2

1
φ∗ + cI

1−φ∗
,

where c = b
a

> 1 because of equation (21).
In optimizing the power with respect to φ∗, we have

φ∗
mp = 1

1 +
√

cI
(22)

or equivalently

β

α
=

√
I

c
. (23)

Of course, this reverts to the earlier form (equation (21)) if c = 1.

In order to apply the second rule (15), we may face an existing heat exchange rate
apparatus which is to be redistributed between the hot and cold sides to achieve maximum
power. Now, the total area A is fixed but when distributed it has different overall heat transfer
coefficients and hence different effectiveness on the hot and cold sides. Equation (16) gives
us

φ∗∗ = α

UHA
; 1 − φ∗∗ = β

ULA
.

8
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Figure 2. The effect of the distribution of the heat exchanger area AH
A

versus Ru, if the total area
is fixed (equation (25)) for values of I = 1, 1.2 and 1.3.

Thus, dimensionless power p∗∗ = P
AUH TH

is given by

p∗∗ = (1 − √
Iμ)2

1
φ∗∗ + I

(1−φ∗∗)Ru

,

where Ru = UL

UH
. In optimizing the power with respect to φ∗∗, we have

φ∗∗
mp =

√
Ru√

I +
√

Ru

(24)

or equivalently

β

α
=

√
I
√

Ru; AL

AH

=
√

I

Ru

=
√

I
UH

UL

.

Then, the optimal distribution of the heat exchangers areas is

AH = A

1 +
√

I UH

UL

(25)

AL = A

1 +
√

UL

IUH

(26)

which has been reported in [9, 32], if I = 1. Moreover, this coincides with that of [36], if
there is no heat leak in their model. However, [32, 36] have used another thermoeconomic
optimization criterion.

The optimal distribution of the heat exchanger area AH

A
with respect to Ru

(
UL

UH

)
is shown

in figure 2. This figure shows that a larger fraction of the area supply should be allocated to
the heat exchanger whose overall heat transfer coefficient is lower (I = 1) [9] . In general,
if Ru decreases, because the effectiveness of the hot side heat exchanging is proportionally
higher, the hot side area always decreases, but quickly for Ru < 1. This behavior is the same

9
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if the internal dissipation increases (I > 1). One analogous interpretation corresponds to Ru

increased. Also, the optimal distribution of the heat exchanger area AL

A
with respect to Ru is

included in figure 2; since AL

A
is clearly the complement of AH

A
.

4. Discussions and conclusions

After the CA-engine, a new approach to thermodynamics was proposed: finite time
thermodynamics. This approach took into account time in the analysis of thermodynamic
processes and emphasized maximum power as an interesting bound. Inspired by this approach,
Rubin [12] used it to study the endoreversible engine, which he defined as: an engine such
that during its operation its working fluid undergoes reversible thermodynamics. In many
applications, the power plants are more convenient to use than the CA-engine. While heat
exchanges are sequential processes in the CA-engine, they are simultaneous processes in the
power plants. The differences arisen in relation to this have been considered previously in
[37].

Now if in the Carnot-like power plant model herein presented we consider additionally
that the times of the two isothermal processes (the CA-like model [4]) are, respectively, tH
and tL, the connecting adiabatic branches are often assumed to proceed in negligible time [6],
and if the cycle contact total time t is [12]

t = tH + tL, (27)

then, we have the following corollary.

Corollary 1. For φt
mp = tH

t
the partial criterion is satisfied.

For maximum power, we have found the following: if we consider the Carnot-like power
plant model (steady-state), then φmp satisfies equation (20); but if not, for the CA-like model
φmp is given by [1]

φt
mp = 1

3
√

I + 1
= φt

me = φt
mec = φt

pme = φt
m�. (28)

The values of φmp are different because the last equation was obtained including
simultaneously the constraint of cycle contact total time (equation (27)) together with the
constraint given by equation (11). This case is developed with further details in [1, 22].
For instance, equations (25) and (26) corresponding to the optimal distribution of the heat
exchangers areas (CA-like model) change to

At
H = A

1 + 3
√

I

√
UH

UL

and At
L = A

1 + 1
3√
I

√
UL

UH

.

An outstanding conclusion for the maximum ecological function for the Carnot-like power
plant model herein presented (or CA-like model) is the following total criterion.

Criterion 2. If there is no leak in the Carnot-like power plant model (or CA-like model),
then the points in which the function E achieves a maximum value (xmE, φmE, φ∗

mE, φ∗∗
mE or

xmE, φt
mE, φt∗

mE, φt∗∗
mE) are

xmE =
√

μ (1 + μ)

2I
,

φmE = 1√
I + 1

(
or φt

mE = 1
3
√

I + 1

)

10
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φ∗
mE = 1

1 +
√

cI

(
or φt∗

mE = 1

1 +
√

c
3
√

I

)

φ∗∗
mE =

√
Ru√

I +
√

Ru

(
or φt∗∗

mE =
√

Ru

3
√

I +
√

Ru

)
and the efficiency at maximum ecological function can be expressed approximately as the semi-
sum of the Carnot-like efficiency and the efficiency at maximum power (semi-sum property) of
the Carnot-like power plant model (or CA-like model). This maximization is valid for any law
of heat transfer that satisfies some of the following constraints:

α + β = γ or aα + bβ = C (29)

AH + AL = A (30)

tH + tL = t, (31)

where γ,C,A and t are constants.

Indeed, if there is no heat leak, the maximum ecological function [16] and [17] (which
coincides with the �̇ criterion [30]) satisfies the semi-sum property independently from the
heat transfer law used; i.e. if xmE is the point in which the function E achieves a maximum
value, this point is always given by [1]

xmE =
√

μ(1 + μ)

2I
,

equations (20), (22), (24), (28), by the partial criterion herein presented, and equations (28)
and

φt∗
mE = 1

1 +
√

c
3
√

I
and φt∗∗

mE =
√

Ru

3
√

I +
√

Ru

,

which were found in [1], are also valid for any law of heat transfer with internal thermal
conductances, overall heat transfer coefficients, areas and times constrained by one or two of
the equations (29), (30) or (31).

However, the remarkable conclusion of this work is that it can find the maximum power,
for the Carnot-like power plant model (or CA-like model) herein presented, by

∂P

∂φ

∣∣∣∣
φmp

= 0 and
∂2P

∂φ2

∣∣∣∣
φmp

< 0,

where φ corresponds to one of the variables that satisfies some of the following constraints
(29), (30) or (31). The optimal values obtained given by

φop = 1√
I + 1

(
or φt

op = 1
3
√

I + 1

)

φ∗
op = 1

1 +
√

cI

(
or φt∗

op = 1

1 +
√

c
3
√

I

)

φ∗∗
op =

√
Ru√

I +
√

Ru

(
or φt∗∗

op =
√

Ru

3
√

I +
√

Ru

)
are fundamental because they are the same for the other operation regimes of the model
(efficiency, ecological function, efficient power or �̇ criterion) and are independent from the
heat transfer law used.
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Also it is outstanding that the parameter x (the internal isentropic temperature ratio) can
be considered as the fundamental characteristic parameter of these models. This is the only
parameter that changes its optimal value according to the engine operation conditions. The
remaining parameters φ, φ∗, φ∗∗ maintain their optimal value independently of the operation
condition of the power plant.

Finally, the methodology and the partial criterion can be applied to other objective
functions which are algebraic linear combinations of the objective functions herein presented,
for instance P + η, and can be extended to other models of irreversible engines [19–21].
Further work is underway.
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[34] Arias-Hernández L A, Angulo-Brown F and Páez-Hernández R T 2008 First-order irreversible thermodynamic

approach to a simple energy converter Phys. Rev. E 77 011123
[35] Salah EL-Din M M 2001 Second law analysis heat engines with variable temperature heat reservoirs Energy

Convers. Manage. 42 189–200
[36] Sahin B and Kodal A 2003 Finite size thermoeconomic optimization for irreversible heat engines Int. J. Ther.

Sci. 42 777–82
[37] Wu C, Kiang R L, Lopardo V J and Karpouzian G N 1993 Finite-time thermodynamics and endoreversible heat

engines Int. J. Mech. Eng. Educ. 21 337–46

13

http://dx.doi.org/10.1515/JNETDY.1999.020
http://dx.doi.org/10.1119/1.14240
http://dx.doi.org/10.1088/0022-3727/20/2/014
http://dx.doi.org/10.1088/0022-3727/32/2/006
http://dx.doi.org/10.1016/j.apenergy.2007.03.001
http://dx.doi.org/10.1016/j.apenergy.2007.06.001
http://dx.doi.org/10.1179/174602206X90931
http://dx.doi.org/10.1016/S0196-8904(00)00120-5
http://dx.doi.org/10.1088/0022-3727/33/11/321
http://dx.doi.org/10.1103/PhysRevE.77.011123
http://dx.doi.org/10.1016/S0196-8904(00)00051-0
http://dx.doi.org/10.1016/S1290-0729(03)00048-6

	1. Introduction
	2. The Carnot-like power plant and a criterion of partial optimization
	3. Optimum  for the dimensionless power output
	4. Discussions and conclusions
	Acknowledgments
	References

